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Contour Integral Method with Fringe
Complex Images for the Rapid Solution
of Patch Resonators of Arbitrary Shape

Amjad A. Omar, Y. L. Chow, and M. G. Stubbs

Abstract—An accurate and computationally efficient method is
presented for solving patch resonators of arbitrary shape. This
method improves on Okoshi’s 2-D contour integral (CI) method
by including the fringe fields and radiation, through use of the 3-
D complex images. The presented method may be called contour
integral with fringe (CIF). Experiments are conducted to verify
the accuracy of the CIF method and show very good agreement
with the theoretical predictions.

I. INTRODUCTION

ECENTLY, filters composed of patch resonators have

attracted much attention because of their appealing prop-
erties. Their lightweight and high quality factors, especially if
built of superconducting materials [1], are very attractive for
satellite communications.

The use of patch filters necessitates the accurate modeling of
the patch resonator shown in Fig. 1(a). This modeling should
include the fringe fields and radiation, and place no restriction
on the shape of the patch. It should also be computationally
efficient to prepare for the design of larger filter circuits
containing more than one patch [1].

Four methods have frequently been used to solve paich
resonators: 1) The mode matching method [2] expands the
fields under the patch in terms of a finite number of modes.
This method can therefore only solve patches of regular shapes
that have known modal expansions. 2) The point-matching
method [3] matches the field on the large surface of the patch.
This results in the matrix of electric current having frequently
between 180 to 600 unknowns for one single patch. This
method is thus unsuitable for solving large circuits of more
than one patch, and also has difficulty with patches having
mode coupling stubs [1]. 3) The spectral domain method
[4] requires the basis functions for the electric current on
the patch to satisfy the edge condition on the patch and be
analytically fourier transformable. This, however, is difficult to
achieve for patches of irregular shapes having mode coupling
stubs. 4) The 2-D contour integral (CI) method of Okoshi [5]
matches only around the perimeter (edge) of the patch. This
method places no restriction on the shape of the patch and
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produces a 3 to 20-fold reduction in unknowns. However,
the CI method assumes a magnetic wall around the edge
of the patch, thereby ignoring the effect of the fringing
fields and the radiation. This magnetic wall assumption has
to be relaxed for more accurate simulation of the patches,
and also to include the coupling between adjacent patches.
Martinson and Kuester [6] proposed a fringe correction factor
depending on the substrate ¢.. Such an improvement still
ignores the dependence of the fringing fields on the contour
of the edges. Therefore, an alternative improvement on the
CI method is desirable. One such improvement is proposed
below.

The resonator structure is divided into the interior and
exterior regions, as shown in Fig. 1(b). For the interior, we
use the 2-D contour integral (CI) method. However, unlike the
standard CI method, we do not assume a magnetic wall of zero
tangential magnetic field on the patch perimeter. Instead, we
match both the electric and magnetic fields between the interior
and exterior regions. The fields for the exterior region, which
account for the fringe fields and radiation, are derived using the
accurate and rapidly convergent complex image technique [7].
The proposed method, similar to the CI method, is general for
any patch shape, and highly convergent, as it only discretizes
the perimeter of the patch. It is also more accurate, as it
includes the fringe field and radiation.

With the addition of the fringe field through the 3-D
complex images, the method of this paper is named contour
integral with fringe (CIF).

Experiments were conducted on rectangular, circular, and
dual mode patches (rectangular with corner cut) to verify the
accuracy of the CIF method.

Section II explains the theoretical background of this paper.
This includes derivation of the CI method through the use of
vector potentials, and the complex image Green’s functions.
Section III explains the theoretical contribution of this paper
of matching the fields at the patch perimeter. Section IV-A
explains our choice of the moment method type and basis
functions. Section IV-B presents numerical and experimental
results for directly fed microstrip patches having rectangular
and circular shapes, as shown in Fig. 2(a) and (b). Results are
also presented for a square patch with a corner cut [Fig. 2(c)].
Section V presents our conclusion.

The focus of this paper is on the directly fed patch res-
onators. Gap-coupled patches, as well as coupling between
different patches, will be studied in the future.
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Fig. 1. The microstrip patch resonator with direct microstrip feed: (a) 3-D
view. (b) Cross section. (w is the width of the feed microstripline).
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Fig. 2. Microstrip patch resonators of different shapes: (a) Rectangular patch.
(b) Circular patch. (c¢) The dual mode square patch with corner cut.

II. THEORETICAL BACKGROUND

As background, this section outlines separately each of
the two methods, contour integral and complex images. The
combination of the two methods on the patch perimeter (to
satisfy the boundary conditions on the perimeter) will be
explained in Section III-A.

A. Standard Contour Integral (CI) Method—A
2-D Formulation for the Interior Region

For the interior region, the fields are assumed to be invariant
along the substrate thickness. This allows the use of the 2-D
contour integral (CI) method [5] to relate the electric voltage
(magnetic current) on the whole boundary of the interior region
I to the equivalent electric current IZ, on this boundary.

The CI (Okoshi’s) admittance matrix has been derived in
the literature {5] using Green’s theorem. Equivalently, in this
section, the same matrix is derived from vector potentials of
both electric and magnetic currents.
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The electric voltage along the perimeter of the patch (at
any location s), resulting from both longitudinal electric and
transverse magnetic currents in a 2-D problem (no variation
with z) as shown in Fig. 3(a), is given by [8]

Ve(s) = —hE.(s) = jwpohA.(s) + M(V x F).2 (1)

where V¢, E,, A,, F are the electric voltage, the z-directed
electric field component, the electric current vector potential in
the z-direction, and the magnetic current vector potential tan-
gent to the perimeter in the transverse plane, respectively, and
h is the microstrip substrate thickness. In (1), the contribution
from the electric scalar potential (resulting from the electric
charge), is not included since its derivative with respect to z
is zero. In general, for a 2-D problem with no variation along
z-axis

A3 = - [ TP ks~ s @
JJc

F(3) = i/ I ()amH (kgl5 - F)ds'  (3)
C

1 d (2 /7. 12 21\
2] C‘]inte d|§*_§/'[HO (}‘/d|3 5')_‘[

(G X 7).5ds" (4)

where J£ .. and J._ are the equivalent electric and magnetic
current densities, respectively, radiating in the interior region;
am, T, £ are unit vectors, respectively, in the direction of the
magnetic current at the source s’, pointing from the source to
the field, and in the z-direction. kg is the wave number in the
dielectric, and Ho(z) is the Hankel function of the second kind

of order zero. The triple product in (4) is given by
)

where # is the angle between the normal to the perimeter
at s’ and the straight line joining the source point s’ to the
field point s [5]. Substituting (2)—(5) in (1) yields the standard
Okoshi integral equation of the interior region, relating the
edge (equivalent) magnetic current (electric voltage) I7).. to

mnte
the edge (equivalent) electric current density J5, .

1 . .
e = 5 [ Akacos R (hald = D 1u()
JJc
ool (hald = 5') Tieo(5)} ds' (©)
where I is the equivalent magnetic current on the perimeter

of the interior region, H. {2) represents the Hankel function of
the second kind of order one, and C is the contour of the patch.
Rearranging (6), with the electric current and edge magnetic
current to different sides of the equal sign, gives the following
matrix equation

lfnte = [Knte]lgte (7
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Fig. 3. Splitting the resonator structure into interior and exterior regions. (a)
The interior homogeneous 2-D region. (b) The exterior region in a dielectric
substrate of thickness 2h.

where I, is the column matrix of the (edge) electric cur-
rent in the interior region, and [Yi,] is the standard 2-D
Okoshi admittance matrix. The final expression for the interior
admittance elements [Yi ] can be obtained from [5].

It is important to emphasize that the CI (Okoshi) matrix
equation in (7) relates the electric current to the magnetic
current on the whole perimeter of the patch, with the only as-
sumption being that the fields are invariant along the substrate
thickness. However, in solving (7), the CI method assumes that
the electric current (related to the tangential magnetic field)
is nonzero only at the port (feed) locations, thereby ignoring
the fringe fields and radiation. This assumption is removed
in our formulation of the CIF method where we match both
the electric and magnetic fields in the interior and exterior
regions along the whole perimeter of the patch, as explained
in Section III-A.

B. Complex Images—A 3-D Formulation of the Exterior Region

Similar to the electric field in (1), the magnetic field required
here for the exterior region, also results from both the electric
and magnetic currents radiating in a dielectric substrate [Fig.
3(b)]. Since the effect of the 3-D fringe field is usually
small, and since this effect is predominantly due to the edge
magnetic current I}, we have neglected without significant
error the contribution of the electric current IZ, .. Therefore.
the magnetic field component tangent to the perimeter in the

exterior region, is given by
HEY = —jwegerF - m — VP - G- ®)

The expressions for (the magnetic current) vector potential F,
and the (magnetic charge) scalar potential ®,,, are derived
using the complex image technique [9].

In the complex image technique, the effect of the dielectric
medium is simulated by a set of images which have complex
amplitudes and complex locations. These images are highly
convergent and accurate such that only four complex images
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are sufficient to produce less than 0.5% error in the Green’s
functions [9]. This technique also allows the separation of
the contribution of the surface waves. The expressions for the
(magnetic current) mixed potentials (F} and ®,,,) are the dual
of the corresponding electric current mixed potentials given
in [9]. Hence, when converted, (8) gives the following matrix
equation

. [Yoxe) Lo 9)

Lext — Zext

where IZ, ., I, are column matrices for the edge electric and
magnetic currents, respectively, radiating in the exterior re-
gion, and [Yy:] is the 3-D exterior complex image admittance
matrix defined in [10]. The minus sign in (9) is added so
that the definition of [Yoxt] in (9) conforms with the standard

definition given in [10], [11].

III. THEORY

This section presents the contribution of this paper of
combining the contour integral method of Section II-A with
the complex images of Section II-B to satisfy the boundary
conditions on the patch perimeter.

A. Our Method (CIF)—A Combination of the 2-D
CI Method and the 3-D Complex Images

In solving the CI matrix equation (7). the CI method forces
the tangential magnetic field to vanish on the patch perimeter.
Our method matches the tangential - and H-fields on the
patch perimeter of the interior region to the corresponding
fields of the exterior region, as follows

1) Tangential E-Fields: Let the tangential electric field on
the perimeter of the patch in the interior and exterior regions

be EP,_, EP.,. Hence, the equivalent magnetic current density
on the perimeter of the interior region JiT is given by
Jie = —hxBEP A (10)

where 7 is a unit vector normal to the perimeter of the patch
pointing toward the inside, and 4, is a unit vector tangent
to the perimeter in the direction of 77, .. With # defined as
above, the magnetic current density on the perimeter of the
exterior region J73, is given by

J7 = AxEL, - Am. an
Since the tangential £-field is continuous on the patch perime-
ter (ie, BF,. = ET ), therefore from (10) and (11) we get,
after converting the current densities to currents

(12)

e = I = T™.
Equation (12) matches the tangential electric field across the
patch perimeter.

2) Tangential H-Fields: Let the tangential magnetic fields
on the perimeter of the patch in the interior and exterior regions
be Hinte, Hext, respectively. From the equivalence principle,
the equivalent electric currents on the perimeter of the interior

and exterior regions, Jg .., J&. are given in terms of the
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magnetic fields in these regions, as follows

R
e 4 N
o = xHinie - 2

inte

(13)

-
e A .
Joow = —AxHeys - 2

(14)

where the magnetic fields in (13) and (14) are functions of the
magnetic current densities JiT . J7. of (10) and (11), and 7
is defined in (10).

Expressing the excitation electric current density JZ, shown
in Fig. 3(a), as the difference between the exterior and interior
magnetic fields, and substituting (13) and (14) in the resultant
equation gives

Js = [ﬁx(ﬁin’oe - ﬁext)] 2= Jite(Jinte) + Joxe (Jexe) (15)

where J¢ . is defined in (7), while J¢, is defined in (9).

Finally, on substituting (7) and (9) in (15), and converting the
current densities to currents, we get the matrix equation

Ise = {[Yinte] + [Yvext]}Im = {[Yinte] + [Y:ext]}ve~

In (16), I7is the vector excitation electric current pointing from
the patch to ground, as shown in Fig. 3, and V® is the vector
of voltage to ground along the patch perimeter.

Equation (16) summarizes our method, which combines the
CI method (represented by [Yige]), with the 3-D complex
images (represented by [Yext])- The 3-D complex image matrix
has been shown [9], [10] to accurately account for the fringe
field and physical radiation.

(16)

IV. NUMERICAL RESULTS

A. Choice of Basis Functions

Throughout the different numerical tests conducted on
patches of different shapes, Galerkin’s moment method with
triangular basis functions produced results that are signficantly
closer to experiment than those of the point matching moment
method with pulse basis functions. The latter is usually used
with the original CI method of Okoshi [5]. The elements of
[Yinte] for the Galerkin moment method with triangular basis
functions are constructed from three triangularly weighted
pulse functions in [11], while the corresponding elements for
point matching are constructed from the simple expressions in
[5]. The comparison between the two methods is illustrated in
Fig. 4 for the rectangular patch of Fig. 2(a). With the accuracy
verified in Fig. 4, the Galerkin moment method with triangular
basis functions is employed throughout the remainder of this

paper.

B. Comparisons Between the CI, CIF Methods, and Experiment

To demonstrate the accuracy and versatility of the CIF
method, it is applied to solve the directly fed microstrip
rectangular and circular patches [Fig. 2(a)—(b), respectively],
and the dual mode square patch with corner cut [Fig. 2(c)].

The experimental results presented for comparison were ob-
tained in our laboratory using an HP-8510 Network Analyzer.
The effect of the discontinuity at the connectors was removed
using the TRL calibration method.
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Fig. 4. |S21| for the rectangular patch resonator of Fig. 2(a), obtamned

using: 1) The CI method with Galerkin moment method and triangular basis
functions. 2) The CI method with point matching moment method and pulse
basis functions. 3) Experiment. (I = 16.5 mm, b = 10 mm, W = 0.58 mm,
h = 0.635 mm, . = 10).

At low frequencies, where the resonances are widely sep-
arated (below 10 GHz), Figs. 5 and 7 for the rectangular
and dual mode patches, respectively, show that the results
obtained using the different methods (CI and CIF) are all
in good agreement with experiment. There is a maximum
difference in the amplitude of Sy; of about 2 dB for the CIF
method and 3 dB for the CI method. There are also only small
shifts in the resonant frequencies (peaks of |Sg1|) and null
frequencies (minima of |Sg;|). Fig. 6 for the circular patch,
however, shows that the results from the CIF method are
even closer to those of the experiment, both in amplitude,
resonant, and null frequency locations, than the results from
the CI method. For example, a round 6 GHz in Fig. 6(a), the
resonant frequency obtained using the CI method is 8% above
the resonant frequency obtained by the experiment. However,
the resonant frequency using the CIF agrees almost perfectly
with that of the experiment. The same applies for the resonance
around 9.7 GHz.

At high frequencies, where the resonances are closely sep-
arated (above 10 GHz), Figs. 5 and 6 for the rectangular
and circular patches, respectively, show that our CIF method
produces results that are in better agreement with experiment.
In Fig. 6 for the circular patch, the first null frequency of Sy
(~ 10.5 GHz) obtained by the CI method is 10.6% above the
experiment’s first null, while the null frequency obtained by
the CIF matches perfectly that of the experiment. Also, the
second null frequency of So; (~14.5 GHz) obtained by the CI
method is 10.5% above that of the experiment, while using the
CIF the null is only about 0.7% above the experiment. Also,
the resonant frequencies (peaks of Sa;) obtained using the CIF
method match perfectly those of the experiment, while those
obtained using the CI are above the experiment by about 2.5%.

As for the results of the dual mode patch of Fig. 7, we
found it more convenient to display our results only up to 10
GHz because the null frequencies above that are too closely
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Fig. 5. A comparison between the S-parameters obtained using the CI, CIF
methods, and our experiment, for the rectangular patch resonator of Fig. 2(a):
(@) [S21]. ®) |$V11]. (Dimensions are in Fig. 4).

spaced. At the lower end of the displayed frequency range,
which corresponds to the region of single mode operation
of this patch (below 5 GHz), the maximum difference in the
amplitude of Sy1 is only less than 1 dB. At the upper end, the
maximum difference in the amplitude of S9; is about 5 dB.
From the discussion above, it becomes clear that adding the
fringe fields and radiation is definitely improving the response
at high frequencies and frequently even at low frequencies
(Fig. 6). This improvement is more significant at the null
frequency locations and for the “skirt” between the resonances.
To demonstrate the convergence of this approach, our results
for the circular patch of Fig. 6 are compared with results
obtained using the point matching software “Sonnet,” as shown
in Fig. 8. In this comparison, the CIF used only 40 segments
along the peripheral of the patch while Sonnet used about
500 segments on the top surface of the patch. Choosing more
segments in our method (up to 300) caused no detectable
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Fig. 6. A comparison between the S-parameters obtained using the CI, CIF

methods, and our experiment, for the circular patch resonator of Fig 2(b): (a)
|21 ) |S11]. (@ = 5 mm, W = 0.58 mm, k = 0.635 mm. &, = 10).

change in our results. In general, our results are found to
be as accurate or more accurate than Sonnet’s although we
reduced the number of unknowns by about 10 folds. This could
represent an important time and memory reduction, especially
when dealing with large circuits having more than one patch
[1]. It may also be important to point out that the strange
behavior of the Sonnet curve at about 16.4 GHz may be caused
by a box resonance. With open space assumed, our method
has no such limitation.

V. CONCLUSION

In this paper, we have developed an accurate method for
solving directly fed microstrip patches of arbitrary shape. This
method improves on the contour integral (CI) method by
including the fringe fields and the physical radiation of the
patches using full wave complex image Green’s functions. The
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Fig. 7. A comparison between the S-parameters obtained using the CI, CIF
methods, and our experiment, for the dual mode square patch resonator with

corner cut of Fig. 2(c)L: (a) |S21]. (b) |S11]. (L1 = 13.9 mm, Lo = 11.097
mm, W = 0.58 mm, A = 0.635 mm. & = 10).

accuracy has been demonstrated by several comparisons with
the experimental results obtained in out laboratory.

The proposed method has been shown to be versatile in the
sense that it can solve patches of any shape. It is also rapidly
convergent, since it requires less than 50 segments around
the patch perimeter. This results in two minutes per frequency
point on a 33 MHz 80386 PC to solve any of the patches in Fig.
2. This represents a substantial reduction in computing time
over the point matching and mode matching methods, with
no sacrifice of accuracy. Results are obtained for the circular
patch using the point matching software “Sonnet.” In solving
this patch, Sonnet software used 500 segments on the surface,
while we only used 40 segments on the peripheral of the
circular patch. When compared with experiments, our results
are even found to be more accurate than those of Sonnet.

The above CIF method of modeling the fringe field and
radiation of the patch as a 3-D closed loop of magnetic current
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Fig. 8. A comparison between |S21| obtained using the CIF method, the
point matching software “Sonnet” and with experiment for the circular patch
with dimensions given in Fig. 6.

has been found to be accurate provided that the thickness of
the microstrip substrate is less than Ag/15 in the substrate.
Accurate results were obtained even for substrate thicknesses
as large as A;/10 for the circular patch. Within the thickness
limit, our modeling of the patch can evidently be extended
to the studies of gap excitation of patch and edge coupling
between patches. Future work will be directed to these areas.
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